Planets further from our Sun have strongest winds ??

List members, they say , nature doesn't give up it's secrets very easily , but here is a fact staring us in the face that cannot be explained properly by any planetary scientist :

The point I am getting at is - how do outer planets like Uranus and Neptune that are at freezing cold temperatures , with hardly any heat from the external Sun reaching them , have such powerful wind systems ? This is so counter-intuitive !

What energy source exactly is fuelling winds of an incredible 1,300 miles an hour on Neptune that's below -200 degrees Centigrade ?? At those sort of temperatures , with our Sun appearing like just a tiny speck in Neptune's sky , what is driving such immensely powerful wind systems ??

The answer is - it's the inner core of planet Neptune . Folks , wind circulation of the outer planets is almost exclusively driven by the energy of the inner sun of that planet , leaking out to the surface from it's polar openings . So , this in itself is a major evidence that all planets are hollow , with an inner sun !

Why do planets farthest from sun have highest winds?

The planets beyond Mars exhibit the highest winds speeds of any other

planets in the solar system. It's a puzzle, because less energy from the sun is available there to drive higher winds.



		[Pete Spotts, Staff writer](

May 17, 2013


    View Caption

      						<img src="" alt="" id="yui_3_16_0_1_1497547491458_2990" data-id="08136b3d-bfb1-8475-5156-76f572c5927d" class="">
  • About video ads
    View Caption

Astronomers have long marveled that the fastest wind speeds in the solar system have been clocked on the planets farthest from the sun.

Now, they may be a step closer to figuring out the energy source that drives these mighty winds.

In a new study, a team of scientists from Israel and the US finds that on Uranus and Neptune the winds appear to be confined to the top 680 miles of the atmosphere – and may actually involve a thinner layer than that.

Recommended:Are you scientifically literate? Take our quiz

The results not only reveal new information about Uranus and Neptune, the researchers say. They also provide insights into the mechanisms driving the atmospheres of planets orbiting other stars, says
William Hubbard, a researcher at the University of Arizona's Lunar and Planetary Laboratory and a member of the team reporting the results in Thursday's issue of the journal Nature.

Test your knowledgeAre you scientifically literate? Take our quiz

In Pictures
Awesome photos of Jupiter

Photos of the Day
Photos of the day 05/05

Up to now, researchers have posited two possible sources: processes confined to the top layer of the atmosphere or heat welling up from deep in the planets' interiors. Both planets emit more heat than they receive from the sun, with Neptune radiating twice as much. And while 680 miles of atmosphere seems towering by Earthly standards, it's only skin deep for Uranus and Neptune.

winds in the planets' wide equatorial jet streams rip along at speeds of up to 450 miles an hour on Uranus and as high as 1,300 miles an hour on more-distant Neptune. Still, the flows "seem to be rather shallow, so
the amount of energy that has to be supplied to keep them going is much
less than might have been thought," Dr. Hubbard says.

The planets beyond Mars exhibit the highest winds speeds of any other planets in the solar system. Yet from Jupiter
on out, wind speeds increase with distance, even though less energy is available from the sun to drive atmospheric circulation at each orbit along the way.

The reasons for this trend "are not well understood, actually," says Adam Showman, also with the Lunar and Planetary Laboratory and a member of the study's team. But the prime suspect is atmospheric drag, or rather, the lack of it.

The outer planets' atmospheres behave more like liquids deep in their interiors, so there is virtually no surface roughness to act as a drag on winds, as
there is on Earth. And as the distance between a planet and the sun increases, there is less solar energy to impart turbulence to the atmosphere, which also acts as a drag.

So even though the energy reaching the planets is weak, "the drag is even weaker, and therefore the winds are faster," Dr. Showman says.

That still leave open the
question of where the winds get their energy, and how deeply the winds penetrate into the atmosphere hold an important clue to that puzzle.

Voyager 2
took photos of the two planets as it sped by them and made other measurements, but it had no way to measure the winds or how deep they reach into the atmospheres of the two planets.

So the team, led by Yohai Kaspi, of the Weizmann Institute of Science

in Israel, tapped an approach that has been used to study other planetary interiors for decades: measuring a planet's gravity field.

interior structure of a planet and the detailed distribution of [its] mass tells you a lot about what the planet is doing, Showman explains. "That distribution of mass affects the gravity field."

For gas giants like Jupiter and the other outer planets, their atmospheres are so thick that they represent the lion's share of the planets' masses.

the early 1990s, Dr. Hubbard suspected the same might be true for the gas giants, whose large-scale atmospheric circulation features affect the atmosphere's density in their vicinity, which should show up as subtle changes in a planet's gravity field. The larger the feature, the more pronounced its imprint on the gravity field would be.

data from Jupiter, he got hints that the technique worked. Subsequent research provided enough of a proof of concept that NASA
now has the JUNO mission heading to Jupiter to map the planet's gravity
field with enough precision to use the data as a probe of atmospheric features in a broad range of size scales.

The JUNO orbiter was launched in August 2011 and is expected to arrive at Jupiter in July 2016.

crunching the numbers for JUNO, the team realized that the wind features on Uranus and Neptune are so large that the somewhat fuzzy view
Voyager amassed of the two planets' gravity fields might still be good enough to reveal information on the depth of the winds. That indeed proved to be the case.

As for possible energy sources, the sun may
play a small role, but the main driver may lie not deep in the planet's
interior, but near the base of the jet streams themselves.

On Neptune, which emits twice as much energy as it receives from the sun, the researchers suggest that the heat driving the winds could come as water vapor in the atmosphere condenses into clouds. Condensation releases the heat required to turn it the water into into vapor in the first place.

The heat that evaporated the water represents heat left over from the planet's formation, the researchers suggest.

on the other hand, present something of a puzzle because while it, too, radiates more energy that it receives, it's only about 10 percent more, Showman says.


List members , the above post explains how mainstream climate science is utterly incapable of explaining this anomaly .

The heat source fuelling such winds on distant outer planets just cannot be the Sun - rather it must be their respective inner Suns .

This is the strongest evidence linking climate on a planet's surface to it's core .


All 4 of the gas giants in our Solar system are planets with "intense STORMY atmospheres" , despite being too far away from the Sun's heat . The obvious reason is the energy from their respective Inner Suns !